The 5 Things Engineering Teams Should Be Doing Right Now to Utilize AI & ML Technologies
9:39
According to a recent survey, 47% of companies today consider AI/ML as a top priority in 2024. Yet, according to Harvard Business Review “cross-industry studies show, on average, less than half of an organization's structured data is actively used in making decisions—and less than 1% of its unstructured data is analyzed or even used at all.” 1
This statistic should concern R&D or Engineering decision-makers. Companies are drowning in data, and very few companies can leverage their data because they are stuck trying to find, access, and connect various data sources. So first ask yourself these three questions:
According to a recent survey, 47% of companies today consider AI/ML as a top priority in 2024. Yet, according to Harvard Business Review “cross-industry studies show, on average, less than half of an organization's structured data is actively used in making decisions—and less than 1% of its unstructured data is analyzed or even used at all.” 1
This statistic should concern R&D or Engineering decision-makers. Companies are drowning in data, and very few companies can leverage their data because they are stuck trying to find, access, and connect various data sources. So first ask yourself these three questions:
So, your customers are committed to a Digital Transformation (DT) journey. How does this affect the engineering organization? Engineering executives expect integrating digital technology into all aspects of the business will deliver great value. They expect DT to fundamentally change and improve business operations. As part of the DT journey, engineering teams want to unify and update systems, organizations, and processes to support next-generation product development cycles. Their engineering tools requirements, infrastructure ,and processes will be viewed through this lens. Are your offerings ready to support your customers’ DT projects with scalable, digital enterprise-ready architecture and capabilities?
Harvard Business Review[i] reported that cross-industry studies show, on average, less than half of an organization's structured data is actively used in making decisions—and less than 1% of its unstructured data is analyzed or even used at all.
This is post 2 in the series on 'The 7 Data Habits of Highly Effective Product Companies'. Tune in to our LIVE WEBINAR '7 Data Habits of Successful Product Companies' - MARCH 31, 11 a.m. CDT
Around the globe, in practically every sector, manufacturing facilities are undergoing a major transformation. Factory 4.0, Smart Factories, is becoming a reality. Digitization is changing the way we process materials and make products. Data and the intelligence it can provide is proving to be the key to completely reshaping manufacturing.